
STRNCPY 1
ID: 854-BSI | Version: 4 | Date: 5/16/08 2:39:37 PM

STRNCPY
Make sure the buffer and bounds are the proper size to hold the source string plus a NULL character.

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-04-23

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 7939 bytes

Attack Category • Malicious Input

• Denial of Service

Vulnerability Category • Buffer Overflow

• No Null Termination

Software Context • String Management

Location

Description strncpy() and related functions copy a specific
number of characters from one buffer to another.
While the presence of the bound makes it safer than
the similar strcpy function, it can still cause a buffer
overflow.

The strncpy() functions are preferable to strcpy()
because they accept boundaries for buffers that
can be checked against. However, they are still
vulnerable to certain attacks if used improperly:

1. passing of NULL for src or dest causes exception
2. 'count' size parameter is often incorrectly passed
in
3. not guaranteed to have null terminated string upon
exit

Make sure the buffer and bounds are the proper size
to hold the source string plus a NULL character.

APIs Function Name Comments

_mbsncpy

_tcsncpy

lstrcpyn Windows

lstrcpynA

lstrcpynW

StrCpyN "StrCpy" routines are
from shell, Shlwapi.dll

StrCpyNA "StrCpy" routines are
from shell, Shlwapi.dll

1. http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html

STRNCPY 2
ID: 854-BSI | Version: 4 | Date: 5/16/08 2:39:37 PM

StrCpyNW "StrCpy" routines are
from shell, Shlwapi.dll

StrCpyNW

StrNCpy macro that calls the
StrCpyN function

strncpy make sure null
terminated

strncpy

ualstrcpyn unaligned Unicode
characters on MIPS,
PPC, Alpha

ualstrcpynA unaligned Unicode
characters on MIPS,
PPC, Alpha

ualstrcpynW unaligned Unicode
characters on MIPS,
PPC, Alpha

wcsncpy

Method of Attack An attacker can manipulate the input strings to
cause access violations and possibly take control
of the program. Passing NULL as src or dest can
easily cause the program to terminate, thereby
enabling a DoS attack. In some cases, passing in
exactly the right size string can cause the resultant
dest string to not be null terminated. This can
potentially lead the further uses of the dest string to
overflow into adjoining memory and cause buffer
overflows. The most common problem, however,
is improperly passing in the 'count' or 'length'
parameter for strncpy, thus causing other buffer
overflow problems. This is especially common when
using wide double byte (Unicode) characters. Buffer
overflows commonly occur with this function when
the maximum size of the return buffer is specified in
bytes instead of characters and the source/destination
strings are Unicode or multibyte strings.

Exception Criteria

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

When copying a
string.

As a rule, you
must ensure
that the return
string buffer is
at least large
enough to hold
the specified
maximum
number of

Effective, but
still requires
care in checking
sizes.

STRNCPY 3
ID: 854-BSI | Version: 4 | Date: 5/16/08 2:39:37 PM

characters,
not bytes, plus
the NULL
character.

Follow these
rules for safe
use of strncpy()
1. Verify that
src and dest are
not NULL.
2. Null
terminate the
final character
of DEST.
3. Use
strncpy(dest,
src,
sizeof(dest)/
sizeof(dest[0])).
4. If the final
character (i.e.,
sizeof(dest) -
1) of DEST is
no longer null,
then the buffer
was overrun.

If using the
"sizeof"
operator to
allocate the
destination
string buffer,
you should
use something
similar to
"sizeof(lpString2)/
sizeof(CHAR)"
or
"sizeof(lpString2)/
sizeof(WCHAR)",
depending
on the target
string type. For
buffers that are
not statically
allocated, use
an equivalent
"sizeof"
operator or
constant that
matches the
declaration.

STRNCPY 4
ID: 854-BSI | Version: 4 | Date: 5/16/08 2:39:37 PM

On Windows
platforms,
consider using
StringCbCopyN
(for byte
counts) or
StringCchCopyN
(for character
counts) from
the strsafe.h
library as safer
replacements
for strncpy().
These routines
deal with
NULL
parameters
better and
ensure that the
buffer is always
null terminated.
If you need
to check the
size of the
input string
to ensure that
your destination
buffer is large
enough, you
should use
StringCbLength
or
StringCchLength
to ensure that
the buffer is the
correct size.

On some UNIX
platforms
(FreeBSD),
consider using
strlcpy(), which
also deals better
with NULL
characters.
You still need
to ensure that
buffer size is
correct.

Signature Details Presence of the strncpy function.

Examples of Incorrect Code char str1[15];
char str2[20];

STRNCPY 5
ID: 854-BSI | Version: 4 | Date: 5/16/08 2:39:37 PM

strncpy(str1,str2,20);

/* The above will cause a buffer
overflow on str1 as it can only
hold 15 characters. Note that if
str2 is null terminated and has
15 or fewer characters, strncpy()
will pad the result with nulls out
to 20 characters. */

Examples of Corrected Code char str1[15];
char str2[20];

strncpy(str1,str2,sizeof(str1)/
sizeof(str1[0]));
str1[sizeof(str1)-1] = '\0'; /*
ensure null terminated */

/* The preceding is safe (though
it will potentially truncate
the string to be copied). If
truncation is undesirable, should
ensure that a sufficiently larger
buffer is allocated. */

Source References • http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/winui/winui/

windowsuserinterface/sec_winui.asp2

Recommended Resources

Discriminant Set Operating System • Windows

Language • C

• C++

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/sec_winui.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/sec_winui.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/sec_winui.asp
mailto:copyright@cigital.com

